728x90

앞에 블로그에서 설명한 것 처럼 푸리에 변환은 시간 영역의 신호를 주파수 영역으로 변환할 수 있는 이론입니다. 푸리에 변환 기본을 아래 블로그로 들어 가시면 참고 할 수 있습니다.

 

2025.06.01 - [영상처리 기술] - 영상처리 푸리에 변환 Fourier Transform 이해와 기본 (Python)

 

영상처리 영역에서는 이미지 평면을 주파수 평면으로 변환하여 분석할 수 있는 도구로 사용할 수 있습니다. 실무에서는 속도와 구현 이점 때문에 고속 푸리에 변환 FFT를 사용합니다. Python, C/C++, Matlab 등 모두에서 이미지 처리시 사용하는 함수 명칭이 “fft” 로 되어 있는 이유가 그 이점 때문에 그렇습니다. 푸리에 변환과 같은 이론들을 테스트 해 볼 수 있는 라이브러리들이 많아지고 있습니다만 단계별 처리 과정이 어떻게 되는지 이해를 하고 활용 또는 응용을 한다면 더 효과 적으로 사용할 수 있습니다.

 

2D Discrete Fourier Transform(DFT) 수식은 아래와 같습니다. F[k,l]은 주파수 영역, f[m,n]은 이미지 평면을 나타냅니다. 

 

푸리에 변환을 통해 얻을 수 있는 값들은 스펙트럼 Spectrum과 페이즈 Phase 정보 입니다. 변환된 수식에서 F[k,l]의 크기를 Spectrum 또는 Magnitude를 의미하고, 각도를 Phase로 부릅니다. 일반적으로 이미지 처리에서 활용하는 정보는 Spectrun(Magnitude)입니다. 

 

이미지를 활용하여 주파수 영역의 스펙트럼을 구하는 순서를 살펴 보면, 

1) 이미지 Width와 Height가 각 2^N에 맞게 조정 후 Zero Padding  

2) 이미지 X 방향 푸리에 변환하고 그 결과에 Y방향으로 푸리에 변환

3) 각 모서리에 집중되어 있는 저주파 영역 DC 정보를 중심으로 이동 시키기 위한 DC Shift

4) 주파수 영역은 그림에서 상단 두 번째 이미지 결과 형태

 

 

 

FFT에서는 2에 거듭제곱에 비례한 신호 또는 픽셀 수를 이용하여 짝수와 홀수로 나누어 변환을 수행합니다. 이를 Butterfly Operation이라고 하며, 처리 속도를 향상 시킬수 있고 하드웨어적인 구현에도 이점을 가질 수 있습니다. 따라서 이미지에 대해서도 2에 거듭제곱에 비례하게 크기를 조절 후 변환하게 됩니다. 예를 들어 500X500 크기를 갖는 이미지라면 2의 N 승배인 512X512로 크기 조절 및 Zero Padding 후 처리하게 됩니다.

 

그림에서 하단 첫번째 처럼 주파수 영역 중심 부분을 필터링하고 역변환하면 하단 두 번째 이미지 결과를 얻는데, 저주파 영역을 마스크 처리 했으니 고주파 특성의 에지영역들만 남길 수 있습니다. 이러한 처리를 Lowpass Filtering 하며, 여러 필터링 방법들을 이용하여 이미지 처리에 응용할 수 있습니다.

728x90
728x90

시간 영역의 신호를 주파수 영역으로 변환하여 처리나 해석하는 이론이 푸리에 변환 Fourier Transform 입니다. 신호처리 분야에서 주파수 영역 분석을 위한 중요한 이론이기도 합니다. 영상처리에서는 이미지를 2차원 신호로 보고 푸리에 변환을 이용할 수 있으며, 이미지 공간 정보를 주파수 성분으로 바꾸어 분석할 수 있습니다. 분석을 통한 응용은 이미지 필터링, 압축, 복원등에 활용됩니다.

 

푸리에 변환은 이론적으로 4가지 형식으로 구분됩니다. 영상처리에 활용되는 기법은 이산 푸리에 변환 DFT (Discrete Fourier Transform) 입니다. 아래는 2차원 이산 푸리에 변환 수식이며 오일러 공식과 결합된 형태 입니다.

 

 

여기서 f(x,y)는 원본 이미지의 픽셀 값, F(u,v)는 주파수 평면에서의 값, M과 N은 이미지 크기인 Width와 Height 입니다. 추가로 푸리에 변환 요소에는 각 주파수 성분의 세기를 나타내는 크기 Magnitude와 성분의 위치 정보를 나타내는 위상 Phase 정보가 있으며, 위상 정보는 이미지의 구조를 유지하는데 중요한 요소입니다.

 

이미지를 푸리에 변환하면 최종 주파수 영역에 중심에는 저주파, 바깥쪽에는 고주파로 구성됩니다. 고주파는 이미지에서 물체의 윤곽선과 같은 에지 Edge 성분들을 의미하고 저주파는 물체의 전반적인 형태를 나타냅니다. 따라서 응용에서는 이러한 특징을 이용하여 저역통과 Low-pass 필터링 및 고역통과 High-pass 필터링을 통해 이미지의 경계 강조나 블러 효과를 낼 수 있습니다. 이미지 압축에서는 고주파 성분이 적으면 적을 수록 작은 정보만으로 이미지 재구성이 가능해지며, 대표적으로 JPEG 손실 압축 알고리즘에서 푸리에 이론의 일종인 이산 코사인 변환 DCT(Discrete Cosine Transform)을 사용합니다.

 

코드를 통해 푸리에 활용 방법을 확인해 보겠습니다. 실무에서는 C/C++, Python, Matlab 등 알고리즘 구현시 FFT (Fast Fourier Transform)을 이용합니다. DFT의 계산 복잡도 때문에 FFT를 활용하게 되며, 예를 들어 샘플 수가 N=1024일 때 DFT는 약 100만번의 연산이 필요한 반면 FFT는 10,000번의 연산이 필요합니다. 아래와 같이 파이썬 Numpy에서는 “np.fft.fft2” 함수를 사용하여 이미지 평면을 주파수 평면으로 변환하며, “np.fft.fftshift” 함수를 통해 저주파 성분을 중심으로 이동 시킵니다. 반대로 주파수 평면에서 이미지 평면으로 변환 시, “np.fft.ifftshift” > “np.fft.ifft2” 함수 순으로 적용할 수 있습니다. 

 

FFT의 이론 및 응용에 대해서는 추후 예와 함께 좀더 상세히 다루도록 하겠습니다.

 

import cv2
import numpy as np

# 이미지 불러오기 (그레이스케일)
img = cv2.imread('lena.jpg', cv2.IMREAD_GRAYSCALE)

f = np.fft.fft2(img) # 푸리에 FFT 변환
fshift = np.fft.fftshift(f)  # 중심 이동

magnitude_spectrum = 20 * np.log(np.abs(fshift)) # 주파수 스펙트럼 확인

f_ishift = np.fft.ifftshift(fshift_filtered) # 중심 복원
img_ifft = np.fft.ifft2(f_ishift) # 역 FFT 적용

# 실수 이미지 변환
img_re = np.abs(img_ifft)
728x90

+ Recent posts